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I. INTRODUCTION 

Exact theory represents the law of nature and controls the rightness of empirical data. It provides the only 

possibility of the, by European law demanded, sufficient, calculable, reliability, even for never measured cases. 

The contrary empirical approach of the data of [1], (an investigation on splitting of joints), is discussed to show 

the general validity of exact theory and to analyze proposed, untenable, design rules. This exact limit analysis 

approach was developed in [2] as reaction on the inadequate, empirical curve fitting method of [3]. The design 

method of [2] was applied since 1990 in Eurocode 5 and therefore followed by several countries as e.g. by the 

Dutch Timber Code. By the definition of a limited ultimate deformation of dowels as design requirement, 

separate rules were possible for splitting of the beam and for the bearing capacity of the dowels of the joint. 

Later this limited deformation rule for the dowel strength was abandoned for these type of joints and solely 

splitting was chosen as end state for the strength. Thus failure may be rather sudden by splitting of the beam, or 
by splitting after early flow of the dowels after a long hardening stage, (which is possible by hardening due to 

confined dilatation of the embedment stress). The possibility of brittle failure was corrected in 2000, by limiting 

the ultimate dowel loading below the lowest splitting boundary of the beam. “Flow” of the dowel then is always 

determining for the strength of the joint, as was the case before. A precise description by theory of all new 

published data, every ten years, was given in [2] and [4], and here for the last new data of [1]. There 

nevertheless remain misinterpretations of data and theory. The error mostly made, by comparisons, is, that the 

lower boundary design equation of the Eurocode (reduction factor 0.67), which always prevents splitting and 

provides that dowel failure is always determining, is regarded as the mean strength equation. Further, the factor 

/
g

n n  of eqs.(B.5 or B.6) is left out, showing that never these real mean strength equations, are regarded at 

comparisons and also is not known when and why the minimum value of /
g

n n = 0.67 applies. Because 

design is chosen in CIB-W18 to provide a safety against the lowest splitting force, by choosing the dowels to be 

always determining for failure, the impression is given of an underestimation of the strength by this factor 0.67. 

In the following is shown, that the tremendous random spreading of outcome of the applied methods of [1], 

(given in [5]), have to be replaced by exact theory to show a precise data fit (here with a coefficient of variation 

of 10%), as to be expected, and as applies for all thus far published data on this subject. A right conclusion thus 

should not concern the exact theory (as always done) but only may confirm that the empirical data, the 

measurements, can be trusted (which thus is shown here to be the case for data of [1]). In the following, first the 
applied methods of e.g. [1], given in [5] and [6], have to be discussed. 

ABSTRACT: 
The results of an investigation of splitting of joints of [1] are used for a discussion of design 

methods and as necessary answer on comments and for confirmation of  the extended fracture 

mechanics theory which accounts for the part of the external energy which is needed for plastic 

dissipation at the dowels, (which cause the crack opening). It is shown that exact theory always is 
needed to give a precise description of fracture behavior for a real calculable reliability in all 

circumstances. It further is shown that applied cohesive zone models, J-integral, and finite element 

solutions, are questionable and always need to be explained and controlled by theory. Important is, 

that these empirical fitting procedures are not able to fit to any relation, as follows from exclusion by 

the “lack of fit” test. Contrarily, limit analysis theory shows a precise fit (with a coefficient of 

variation of 10%) to the theory equation and delivers a conclusive confirmation of criticized design 

rules of Eurocode 5. 
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II. DISCUSSION OF APPLIED CALCULATION METHODS 

2.1. Discussion of Cohesive zone models 
Nearly all assumptions of the cohesive zone models are against exact theory. The most fundamental 

violence is to regard the stress of the softening curve, which is a nominal stress, representing the unloading of 

the specimen due to crack extension, thus is the stress far outside the fracture plane, (the stress ad infinitum), to 

be the stress in the fracture plane (the ligament), while the real mean 

stress in that plane is ultimate, thus constant, (but may show some 

hardening at the start instead of softening). The derivation of the 
softening curve of the center notched specimen is given in [7], 

Section 3.3. The curve represents the decrease of ultimate loading 

and of the stiffness, due to crack extension in the specimen and 

shows a constant energy release rate at every point of the softening 

curve, thus a constant fracture energy and is therefore called Griffith 

locus. The derivation shows that there is no need for contradictions 

as negative stiffness and negative dissipation. This also follows from 

molecular deformation kinetics, [8], showing a common primary 

bond breaking process in the ultimate stress zone. For the dowel 

connection this derivation is given in the Appendix. For instance for 

the constant strain rate test, also   of eq.(B5), increases linearly 

with time, and for long cracks, the softening follows 
1

/
f

V C a . 

Thus there is a constant ultimate moment: 
1u f

M V a C    and 
f

V  

has to diminish at the increase of a . There thus is no diminishing 

strength, but unloading of the specimen. Eq.(B6) shows that, at the 

start of crack extension, which represents the ultimate state, the 

ultimate value of 
f

V is constant (by shear failure, according to the critical distortional energy criterion [14] as 

highest lower bound solution).  
The aim of the cohesive zone model was to remove infinite tensile stresses of the singularity method, by 

substitution of an internal compressional equilibrium system which neutralizes the singularity. However, this 

superposition of closing stresses is superfluous because the singularity does not exist and the singularity 

solution, or mathematical flat crack solution, also is an single mode approximation, which is not applicable for 

the always occurring combined loading modes. The singularity is an empty space within the crack boundaries 

and there thus is no material which can be stressed infinitely high. The crack problem thus restricts to the 

boundary of the crack, thus is a common limit analysis boundary value problem at the crack boundary, or better, 

at the elastic-plastic boundary of the plastic and fractured zone around the crack and crack tip. All kinds of 

dissipation within this boundary determines the fracture energy (= energy release rate). The exact solution of the 

Airy stress function is given in e.g.[7] and shows that fracture of clear wood always occurs, for any load 

combination, by reaching the uniaxial ultimate tensile stress (cohesion strength) at the crack boundary near the 

crack tip, what leads to the parabolic Wu-mixed mode failure criterion:  
2

/ / 1
I Ic II IIc

K K K K    (1) 

Eq.(1) thus is the exact criterion, in accordance with the measurements of precise tests (of e.g. [9] and [10]). By 

this solution (in [7]), the real “traction stresses” in the fracture plane are known. However the cohesive zone 
model assumes the existence of a crack opening law, by measuring the displacement over the crack opening as 

given in Fig. 1. The total applied external work on the specimen, however, follows from load, and the 

displacement of that load at the specimen. The load at crack extension is about proportional to the remaining 

ligament length for long cracks, because of the constant mean ultimate stress in the ligament (for high loaded 

ligament in the end state). Thus, to maintain equilibrium the external force diminishes in proportion to the 

remaining ligament decrease. The deformation increases because of the decrease of the stiffness of the specimen 

by crack extension. Yield drop necessarily occurs because the rate of fracture is much higher than the rate of 

straining by the constant strain rate test. Measuring deformation over a crack opening has no meaning because it 

is not known what is measured. In Fig. 1, the stress and strain at the points A are zero, due to the unloaded 

triangles adjacent to the crack, and the crack opening will be proportional to the crack length a  by this local 

unloading, and is not related to the constant ultimate stress in the remaining intact ligament. The area under the 

non-linear part of the real load – displacement curve determines the total applied external work on the specimen. 

Half of this area is the elastic strain increase and the other half is the fracture energy (= equal to the elastic 

energy increase). The cohesive zone model regards the total area, thus the total external energy as fracture 

energy, thus more than a factor 2 too high. Further is this energy wrongly related to the area of the crack length 

increase instead of to the total crack length area, including the initial crack length. By doing so, the fracture 

energy per unit area (which should be equal to the energy release rate) is not a material constant but depends on 



Limit analysis discussion of design… 

www.ijceronline.com                                    Open Access Journal                                 Page 37 

the chosen initial crack length. Further, the total measured energy has to be divided among the different acting 

processes. The deformation kinetics activation energy and concentration tells whether the primary bond 
breaking process of fracture is dominating in the test. The cohesive zone model does not account for this result 

of the exact theory of molecular deformation kinetics, (see [8]). This kinetics theory also explains why softening 

only is possible in a constant strain rate test and is not possible in a constant loading rate test and in a dead load 

test to failure. Because in practice only dead load failure occurs, is it astonishing that impossible softening then 

is regarded as a constitutive traction law. A severe lack of distinction of acting kinetic flow processes is made by 

the cohesive zone model of dowel connections in wood. Most of the energy obtained from the area of the load-

displacement curve is not by tensile traction but due to compressive dowel embedment hardening, showing 

clearly that this area method of the load-displacement curve is not able to give the real fracture energy and thus 

never should be applied. Most investigations on connections are with one- or a few dowels, where the dowel is 

determining for initial “flow” [4]. This applies especially for the in practice applied slender dowels, thus up to 

connections with 9 to 12 nails. Then the dowel is determining for the ultimate load and not splitting of the beam, 
which occurs after flow and hardening of the embedment, because the dowel performs a crack opening 

movement at embedment failure. The exact derivation, as boundary value solution, based on the shear-line 

(called slip-line) construction, of the embedding strength is given in [11], with the simplification to the simple 

spreading model. It is shown below that this spreading model has to be applied on the relevant data of [1]. In the 

2D cohesive zone model for dowel-connections, the measured triaxial compressional hardening is regarded to 

be a tensional hardening of traction, leading to random results, with an extreme high variability, and a statistical 

exclusion of fit to any equation. The reason of this mismatch lies in the method itself because nearly all model 

assumptions are strongly against exact theory and generally against thermodynamics and even the tensile 

strength is not ultimate but variable down to zero (called cohesive forces). It is shown in Section 2.3 that strain 

hardening, in stead of strain softening, exists in the critical section.  

 

2.2. The questionable application of the J-integral 
The J integral, around  a crack tip, applies for a (nonlinear) elastic material and only then J has the 

meaning of an energy-release rate 
c

G . The theory is valid for radial monotonic loading and precludes unloading 

and is then, mathematically equivalent to a nonlinear theory of elasticity. The influence of the behavior of wood 

according to the flow theory of plasticity prevents, even under monotonic loading, that the path-independence of 
J can be established. Under the applied loading histories of [1], after blunting of the top of the loading curve, 

(which includes loading and unloading), J is not only not path-independent, but also has no physical meaning. 

Thus the formation of the fracture process zones, and of flow, during crack growth means non-proportional 

plastic deformation which invalidates the deformation theory of plasticity. Instead limit analysis applies as e.g. 

shown here by its precise data fit. According to limit analysis, it is possible to replace the first rising elastic-

plastic loading curve by a non-linear elastic curve as a lower bound solution. However crack extension start at 

the top of the loading curve and the full value of 
c

G  is reached over the top of the curve at the start of 

unloading. Thus the replaced rising curve is before the top, outside the crack extension and process zone 

dissipation and will not give a right value of 
c

G . Thus, the validity of J has to be denied and the thereupon 

based fracture energy plots, (after partial unloading) as given by Figures 13 to 16 of [6], thus have no meaning. 

By that, also the found differences of mode I and II critical fracture energies, with respect to the usual values for 

wood, are probably explained. Although it is supposed in [1] that this difference is caused by the different stress 

situation with respect to the standard tests, this cannot be true. The by the J-integral, or by crack closure 
technique or compliance method obtained critical energy release rate (or fracture energy) is independent of the 

type and form of the specimen and is equal for all tests for initial fracture. That is why the geometrical form 

factor of a specimen type can be estimated empirically. Thus the application of the J-integral always should 

have been controlled e.g. by the compliance method. A compliance variation could have been simulated by the 

applied computer model by measuring the deflection at the loading points, at varying crack length a , at 

constant load, giving the constants 
1

B  for the compliance: 
2 3

0 1 2 3
.....C B B a B a B a      and the energy 

release rate:        
2 2 2

1 2 3
/ 2 / / 2 2 3

t
G F b C a F b B B a B a           (2)  

where b is the beam width and 
t

G  will be about equal to the real mode I fracture energy. Of course it is easier 

and better to apply the exact eq.(B.6), based on the calculated compliance difference, as shown in the Appendix. 

 

2.3. Softening and hardening behavior 
It is accepted in [1] that the finite element method is not able to show and explain real behavior, but only is 

able to give an imitation of such behavior. For instance embedment flow and hardening by confined dilatation is 

imitated by using a bilinear straining diagram, which imitates a flow point and hardening slope at loading which 

next is accounted as hardening of the fracture energy, leading to non-existent, nowhere else found, crack 



Limit analysis discussion of design… 

www.ijceronline.com                                    Open Access Journal                                 Page 38 

resistance curves. The same applies for softening. The impossible assumption of linear softening behavior, 

given by Fig.2 of [6], as physical material property, for the so called cohesive zone material, is not right and 
leads to models with negative spring constants and allows construction of perpetuum mobile. The apparent 

softening is due to unloading of the specimen, outside the high loaded fracture plane. The stress in the fracture 

plane initially increases at crack extension because the intact zone of the fracture plane decreases. The Griffith 

stress of e.g. the center notched specimen of Fig. 2 is /
g c

G E a  , which is a nominal stress, thus is the 

stress in the intact elastic material outside the fracture plane, and is not the failure stress. The real mean stress 

w
  in the fracture plane is a factor  / 2b b a  higher according to Fig. 2 

and is    / / 1 2 /
w

G E a a b    and thus is an increasing stress with 

crack extension and crack opening increase. It is thus necessary to speak of 

hardening because the stress in the critical section initially increases at crack 

extension: Thus the real critical stress in the critical fracture section 

increases by crack extension when: 

     
1 .5

1 6 /
0

/ 2 / 1 2 /

w c
G E a b

a b b a b a b





  
  

 

                                        (3) 

Thus when / 1 / 6a b  . The lowest value of [7]:  

/ / 6 1 / 6
c

a b l b   when / 0 .5l b  . Thus when the length l  of the 

specimen is higher than 0.5 times the width b. This always applies because 

for / 0 .5l b  , the two crack tips act independently of each other. The 

increase, p.e. of the “traction stress” at increase by a factor 2 of the crack 

length occurs when:  

 

 

1

2

/ / 1 2 /
1

/ 2 1 4 /

cw

w c

G E a a b

G E a a b



 


 



                                                     (4)  

Thus when    2 1 4 / 1 2 /a b a b    or: / 0 .1 13a b  . This applies because / 1 / 6a b  . Thus the decreasing 

fracture plane is always in the ultimate state and the external load has to diminish to maintain equilibrium. It 
thus is necessary to apply real ultimate failure conditions, based on the known molecular deformation kinetics 

processes [8] and on fracture mechanics (see Appendix). 

For wood, tested on a stiff specimen in a stiff testing rig [12], the, near at the top blunted loading curve, 

shows enough plasticity for a total stress redistribution and the value of the energy release rate or fracture 

energy, which is of higher order than the energy needed for separation of the material, shows explicitly the large 

amount of plastic flow which accompanies and explains crack growth (and small crack formation in the fracture 

zone) [13], [7]. The right approach thus is the linear elastic-full plastic approach of limit analysis, what explains 

the possibility of many exact solutions (of the Airy stress function) differing an internal equilibrium system 

from each other and from the real occurring solution [7]. 

  

2.4. Applied failure criterion 
The in [1] proposed failure criterion, eq.(1) of [1] does not meet the prescribed ductile failure state by 

embedment flow, as also was prescribed in the past in all regulations. To avoid splitting in all circumstances, the 

dowel connection has to be designed for maximal 0.67 times the maximal splitting force of the beam, as is still 

prescribed in the Eurocode 5.  

The validity of eq.(2) of [1], has to be shown. Only a theoretical right equation may provide real calculable 

reliability and safety. An empirical equation is not identical to the exact equation and thus is unsafe and wrong 

in other, and in general applications. 

Inserting eq.(3) in eq.(2) of [1], and using eq.(7), gives:  

1

I I I

sp e c sp e c

rI I I

c c

G G
k

G G
       or:    

2 2

, ,

2 2

, ,

1
I sp e c II sp e c

r

I c II c

K K
k

K K
    . (5) 

According to eq.(5.4) of [7], Section 5.2, this is a right theoretical equation according to the orthotropic critical 

distortional energy principle of [14], of the start of initial elastic distortional energy dissipation. However, the 

equation only applies for orthotropic materials with equal compression and tension strengths, thus not for wood. 

Outer this theoretical exclusion, there is an empirical exclusion by a lack of fit as follows from the last equation 

of Table 1. The same applies for the in [1] referred results of M.H. Kasim, who uses the second  
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Table 1. - Lack of fit values for different failure 

criteria [10] 

Failure criterion p-value  

/ 1
I Ic

K K    0.0001  

/ / 1
I Ic II IIc

K K K K   0.0001  

 
2

/ / 1
I Ic II IIc

K K K K   0.5629 

 
2

/ / 1
I Ic II IIc

K K K K   0.0784 

   
2 2

/ / 1
I Ic II IIc

K K K K   0.0001  

   Fig. 3 Exclusion of fit to any equation 
                  Fig. 3. Exclusion of fit to any equation   
equation of Table 1. Both equations are strongly excluded by lack of fit at the, for wood, common variability. It 

has to be explained why the exact failure criterion (the third equation of Table 1) is excluded in [1]. The exact 

derivation of this parabolic Wu-equation is given in e.g. [7]. This is verified by precise measurements of [9]. 

This also is verified by tests of [10] done at the TL-system on eastern red spruce at normal climate conditions 
using different kinds of test specimens. The usual finite element simulations provided the geometric correction 

factors, and the stress intensity factors. The lack of fit test was performed on these data, at the for wood usual 

variability, assuming the five different failure equations of Table 1. The statistical lack of fit values in the table 

show, that only the Wu-failure criterion cannot be rejected due to lack of fit. The Wu-equation is shown to fit 

also clear wood strength data in [14] and [15], as expected from theory. Because the variability of the data of 

[1], indicated by Fig. 3, (Fig. 8 of [1]), is much higher than those of specialized investigations of [9] and [10], it 

is clear that the lack of fit exclusion to any equation will apply for the data of [1].  

 

III. DISCUSSION AND EXPLANATION OF THE GLULAM TEST RESULTS OF [1] 
The Glulam test results, which are the basis of the proposed design rules in [1] are given below as graphs: 

Fig. 4 and 5, (after Fig. 8 and 9 of [6]), following from a loaded dowel connection in a three point bending test 

(see Fig. 1 of [5]). It was shown in [2], that for connections with 1 or 2 dowels, dowel failure, and not splitting, 

is the primary failure cause. Splitting occurs after proceeded plastic dowel deformation with hardening. Thus 

design rules against splitting should not be based on the data of Fig. 4, wherefore dowel embedment failure is 

determining for connections with less than 3 dowels ( / 2 3)
c

n  . Also the application of a single dowel in force 

direction is not right, because of the indeterminacy of the reaction force of the eccentric dowel-force. Further the 
slenderness b/d = 80/20 = 4 (or 63/20 =3 for LVL) is too low. The application of these joints thus is not allowed 

and should not have been accounted as basis of design rules and certainly not for splitting.  

 

3.1. Discussion of triaxial compressional dowel embedment failure, Fig. 4. 
 In Fig. 4, (which is Fig. 8 of [6], used in [1]), the Glulam 

data of the investigation of one- and two dowel 

connections are given. The dimensions of the beam are 

denoted by b/h/L and 
e

h  is the upper dowel distance to the 

lower beam edge. Because these connections are not 

allowed in practice, and by compressional dowel failure, 

don’t give information on initial fracture mechanics, only 

the measured strength characteristics are explained here in 

the following. The left column of Fig. 4, giving the 

influence of /
e

h h  of the one dowel connections, shows 

that after sufficient plastic deformation (wherefore the 

black lines apply), a local failure mechanism around 

Fig. 4. Load capacities 1 and 2 dowel joints  the dowel is determining when / 0 .5
e

h h  , giving a load 

capacity of about 28 kN. The strength at / 0 .4
e

h h  is clearly lower, because now the reduced spreading 

strength of the dowel is determining [10]. Based on these data, is / 0 .6
e

h h   the boundary of equal strength by 

the local failure mechanism around the dowel and the spreading strength. Based on this spreading strength then 
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is for / 0 .4
e

h h  , the strength:  0 .4 / 0 .6 2 8 2 2 .8   kN, close to what is measured. The dowels of the right 

column of Fig. 4, are the same as this dowel, with the same spreading possibility and thus are as strong and thus 

independent of the location (as measured).  

For the 2-dowel connections of the middle column of Fig. 4, is also the spreading possibility determining for the 

initial strength (because / 0 .4
e

h h  ), wherefore now the part Fig. 4. Load capacities for 1 and 2 dowel joints 

between the 2 dowels is determining. Thus, the highest strength of about 44 kN occurs at a dowel distance of 

284 mm. Then the strengths for the other distances are:  

Dowel distance (mm)        X = 284 244 204 164 124 104 84 74 

Strength ( / 2 8 4 ) 4 4X   kN =  44  41  37  33  29  27  24 22 

as is measured.  

Herewith the data of Fig. 4 are explained by initial plastic flow of the dowel embedment. 

 

3.2 Discussion of data of multiple dowel joints of Fig. 5 (Fig. 9 of [6]). 

The dimensions of the tested beams were: b/h/L = 80/304/1320 mm; / 0 .7
e

h h  ; 3 2 0
r

a   mm (
r

a = 

width of the dowel pattern). The third column of Fig. 5 (Fig. 9 of [6]) shows that the joints with 6, 9 and 12 

dowels are about equally strong with a load capacity of about 95 kN. The left column predicts that 
c

n  in 

/
c

n n  is about 5.5, because then the load capacity is 4 / 5 .5 9 5 8 1  kN for the 4 dowel joint and then: 

0.67 95 63  kN, for the 2 dowel joint, as measured. Because 2 dowels are less than 5 .5 0 .45 2 .5  , the 

minimum value of 0.67 applies (see Appendix).  

This splitting independent on the number of dowels, here 

6, 9 or 12 dowels, is discussed before in [4], where also 

the minimal factor of 0.67 is measured for all different 

types of joints of [3]. Table 7.1 of [4] shows e.g. for 

series B, that splitting of the beam is determining, 

showing the same strength, whether there are 10, 15, 20 

or 25 nails per shear plane.  
The fracture theory, discussed in the Appendix, is thus 

precisely followed and therefore confirmed by the multi 

dowel data of Fig. 5. According to eq.(B.6) is 
1 .5

1 7 .3
c

G G N m m


 , which is comparable with the de 

value of 18 1 ,5
N m m

  of [4]. As lower boundary value, of 

Fig. 5. Load capacity for multiple dowel joints  he lowest possible splitting force, is the value: 

 1 .5
0 .6 7 / 0 .6 1 5 .5

c
G G N m m


  since 2000 applied in 

 e.g. Eurocode 5 and the Dutch TGB  

 

IV. DISCUSSION AND EXPLANATION OF THE LVL DATA OF [1]  

Control and explanation of the data follows e.g. by [7]; eq.(B.5) of’ the Appendix. For 1 6
r

a d  in Table 1 

below, is the term with   in eq.(B.5) twice the value as for 8
r

a d and because of the quadrat of   is that 

term 4 times as high. Nevertheless the C- values in the table are hardly higher then, showing the term with   

can be neglected and therefore, eq.(B.6) of [7], is applied instead of eq.(B.5), what is right according to limit 

design to obtain the highest lower bound solution which is equal to the real strength value.   

 
2

/

0 .6 1 1 .5 / ( )

c

f

c

G G h n
V b h

G E n


   
 

 
  (B.5) 

/

0 .6 (1 )

f c

c

V G G h n

b h n  
 

  
 (B.6) 

Because flow of the dowel causes crack opening, the factor /
c

n n  is needed to account for this combined 

plastic and elastic dissipation as is derived in [7], at the end of Section 7.2 and given in the Appendix.  Eq. (B.6) 

can be written as a constant C, which is the same for all specimens in Table 1-2: 

2 / 0 .6 / 1 / 1 /
c c

C b G G F n n h      , 

with: / 2
f

V F  and: / 1
c

n n   when 
c

n n  and / 0 .5
c

n n  , when 0 .5
c

n n , as is derived. C is calculated 
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(using the data of [5] in column 4) and is given in the last column of Table 1  for the different values of h and 

/
e

h h   and has the mean value of: 

2 / 0 .6 4 .5 3 6
c

C b G G  , giving: 1 .5

c
G G 0 .6 4 5 3 6 / ( 2 6 3) 2 7 .9 N m m


      

This is higher than the value for solid wood and glulam of [2] of 20 1 .5
N m m

 . 

 

Table 1. Test program and results of [5].  

 Size of   Number  of  Dowel  Connection    Edge  Connection  

Series  specimens specimens diam.  Layout        distance   width  height     C-factor 

 b/h/l    strength  d    m x n        he/h        ar         ac           C 

 [mm]      [-]  [kN] [mm]      [-]        [-]     [mm]     [mm]       kN/mm1/2 

 

1  63/400/1600       5  31.5 20  3 x 1       0.20       8d         -     4,45  
2  63/400/1600       5  58.6 20  3 x 1        0.40        8d          -     5.08  

3  63/400/1600       5  85.1 20  3 x 1       0.60        8d        -     4.91 

4  63/400/1600       5  59.7 20  3 x 2       0.40        8d       4d      3.66 

5  63/400/1600       5  101. 20  3 x 2       0.60        8d       4d     4.12 

6  63/400/2400       5  68.7 20  3 x 2       0.40        8d       4d     4.21 

7  63/400/1600       5  76.0 20  3 x 2       0.40       16d       4d     4.65 

8  63/600/2400       5  32.8 20  3 x 1       0.13         8d         -     4.89 

9  63/600/2400       5  78.1 20  3 x 1       0.40         8d         -     5.53 

10  63/600/2400       5  92.0 20  3 x 1       0.60         8d          -     4.34 

11  63/600/2400       5  84.1 20  3 x 2       0.40         8d        4d     4.21 

12  63/600/2400       5  87.7 20  3 x 2       0.60       16d        4d     4.39 
13  63/600/2400       5  90.7 20  5 x 2       0.40       16d        4d     4.53 

 The mean value of C is 4.536 with a coefficient of variation of 0.1. 

 

The factor: /
c

n n  = 6 / n 2 1 .4 1  , when 3n  , and: /
c

n n =1, when  6n  . 

This means here that this factor /
c

n n = 1.0, except for the 3-dowel joints where it is: 1.41.  

The data suggest at first glance that 6
c

n  . A precise value can be calculated by iteration.  

 

V. CONCLUSIONS 
 The theoretical equation is shown to fit to the given numerical data precisely (with a coefficient of variation 

of 10%). This provides a confirmation of the design rules of the Eurocode and provides, as exact theory, the 

only possible, real, calculable reliability (safety) in all known and new, unknown and unforeseen 

circumstances.  

 The finite element method of [1], [5] is not able to show real behavior, as e.g. embedment flow and 

hardening and stress spreading effect by confined dilatation and the right unloading behavior. This explains 

the exclusion of results by the lack of fit to any equation.  

 The J integral has no physical meaning by the way it is applied. This may explain the in [1], [5] obtained 

wrong values of the fracture energies.  

 The chosen failure criterion of [1], [5] and [6] applies for orthotropic materials with equal compression and 
tension strengths, thus not for wood. The criterion also is excluded empirically by the statistical lack of fit 

test (even for the low variability of the standard fracture toughness tests). 

 The theory equations and data show that the influence of 
r

a  can be neglected. There also is no better fit of 

the data when it is accounted by applying eq.(B.5) instead of eq.(B.6). This means that eq.(B.6) represents 

the highest lower bound, equal to the real strength.  

 It has to be explained why the exact failure criterion (the third equation of Table 1, the only one not 

excluded by lack of fit) is not applied in [1]. The exact derivation of this parabolic Wu-equation is given in 

[7], and is verified by advanced research of [9] and [10].   

 The investigated brittle joints are not allowed and should not be the basis of empirical rules  

 As known, connections with 1 or 2 dowels, show initial dowel failure and not splitting as primary failure 

cause. Splitting occurs after proceeded plastic deformation and hardening of the dowels. Thus design rules 

against initial splitting should not be based on these data of dowel embedment failure (as is done).  
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 One-dowel connections, show, that after sufficient plastic deformation, a local failure mechanism around 

the dowel is determining when / 0 .6
e

h h   . Below this value, the reduced spreading possibility, thus 

reduced spreading strength, of the dowel is determining.   

 For the applied 2-dowel connections, also the spreading possibility is determining (because / 0 .4
e

h h  ), 

wherefore the distance between the 2 dowels is determining for the spreading possibility as follows from 

theory.  

 Because flow of the dowel causes crack opening, the factor /
c

n n  is needed to account for this combined 

plastic and elastic dissipation as shown in [7] and in the Appendix.  

 This splitting, independent on the number of dowels, here 6, 9 or 12 dowels, is discussed before in [4], 

where also the minimal factor of 0.67 is measured for all different types of joints of [3].  

 According to eq.(B.6) is 1 .5
1 7 .3

c
G G N m m


 , for glulam of [1], which is comparable with the de value of 

18 1 ,5
N m m

  of [4]. As lower boundary value, based on the theoretical lowest value, 1 .5
1 2

c
G G N m m


  is 

proposed and applied in e.g. the Eurocode 5 and the Dutch TGB Code during decades. 

 Softening as material property does not exist and leads to nonsense models with e.g. negative spring 

constants. The real stress on the still intact material of the fracture plane increases, or is in the final ultimate 

state.  

- The increased bearing capacity due to hardening of the dowel embedment strength is wrongly interpreted 

as an increased tensional fracture resistance. This leads to fictive fracture energies given in the figures of 

[1].  

 The lack of fit test excludes the possibility to base design rules on the results of [1] and [5].  

 It was shown 24 years ago by [2] that the exact approach could explain all investigations and could predict 

never before measured behavior. Ten years later in [4], the same was shown for the investigations during 

that time. Again, 14 years later, it is here shown that still the exact theory gives the only right explanation. 

By not following the theory there was a tremendous spill of capital and research capacity by many 

institutes, by doing superfluous, resultless research, not linked to previous developments and investigations. 

As long as exact theory is not followed and developed further, there is no progress possible.    
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VI. Appendix Energy approach for fracture of joists, loaded perpendicular to grain [7] 

The following derivation is given before in different forms, e.g. in [2], [4] and [7], but is not generally known 

and is therefore in essence repeated here for completeness. The apparent brittle failure of the fracture mechanics 

tests is due to instability by too low stiffness of specimen and testing equipment. The testing in [12], at 

sufficient stiffness to follow the theoretical softening curve, shows sufficient plasticity near and at the rounded 
top for total stress redistribution. This means that limit analysis has to be applied for the ultimate strength 

analysis providing always possible exact solutions. Because for small deformations, the ultimate limit value, is 
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not dependent on the followed loading path, the analysis can be based on an elastic-full plastic schematization of 

the loading curve. This means that in stress space, the flow criterion is a single curve and for “plastic” 
dissipation, the stress increment vector should be along (tangential to) the concave curve, and the strain vector 

should be perpendicular to the stress (normality rule) what means that the (maximum) extremum variational 

principle applies for “flow” and thus the virtual work equations apply and thus the theorems of limit analysis, 

with the lower and upper bound solutions, applying for any allowable equilibrium system, (e.g. following as 

solution of the Airy-Stress function). In these small, virtual first order calculations the strength is, except the 

independence of the loading path, also not dependent on initial stress and internal equilibrium systems. It 

therefore is appropriate to apply common beam theory, as small, first order expanded behavior, which can be 

regarded to differ an internal equilibrium system from any real stress state. This also can be stated as follows: 

Because an internal equilibrium system has no influence on the ultimate strength, the differences of the potential 

energy of the internal equilibrium systems, of the cracked, and the un-cracked, intact state, should not be 

accounted and only the first order term has to be regarded. Also lower order effects, as clamping action and 
lower order bending terms have to be omitted for the highest lower bound solution. Thus the beam theory has to 

be applied for the right solution (and thus forget the upper bound finite element calculation). This is applied here 

for the tested beams of [1], thus for a connection at the middle of a beam, to find the compliance difference 

between the cracked and intact state as follows (see Fig. B.1):  

The part above the crack (stiffness  
3 3

2
1 / 1 2I b h  ) carries a moment 3M  and normal force N and the part 

below the crack (stiffness 
3 3

1
/ 1 2I b h ) carries a moment 1M , normal force N and a shear force V. and at the 

end of the crack a negative moment of about: 
2 1

M M  . Further is 
2 1

M M V   , thus 
1

/ 2M V  . 

The deformation of beam 2 of the cracked part βh is equal to 

the un-cracked deformation 
un

  of that part and the 

deformation of beam 1 is 
un

  plus the crack opening   (see 

Figures B.1 and B.2) and   is: 
22 3 3

1

1 1 1 1

1 2 1 1 1

2 3 2 3 4

MV V V

E I E I E I E I

  
              (B.1)  

3 3

3

1

1

1 2

V V

E I b E

 


                                                         (B.1) 

The deflection difference of the cracked and un-cracked state 

is total:  

1 .2 h h
V

G b h b h

 





   

 

+ 
3

3

V

b E




                                (B.2)  (B.2) 

Figure B.1. Beam with crack by the dowel  The condition of equilibrium at crack length β is:  

          force of a joint and bending moment  

 / 2 / 0
c

V G b h        or:   
2

/ / / 2
c

V V G b h      

or:  

c
f

2 G b h
V

( / V ) /


  
                                                         (B.3) 

where 
c

G  is the fracture energy. It follows from eq.(B.2) that:  

  2

3

/ 1 .2 1 3
1

V

b G E b

 

  

 
   

  

                                           (B.4) 

 

Figure B.2. Statics of half the crack.                    and eq.(B.3) becomes: 

 

 
2

/

0 .6 1 1 .5 / ( )

c

f

G G h
V b h

G E


   


 
       (B.5) giving, for the always relatively small 

values of β, the previous for end-notches found equation: 
/

0 .6 (1 )

f c
V G G h

b h  


  
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(B.6)   which thus also applies for notched beams and for end-joints and verifies the lower bound of the strength, 

predicted by the theory of [7]. This shows that only work by shear stresses contributes to mode I fracture (elastic 
shear stress dissipation). This linear elastic fracture mechanics derivation is not enough because design also 

should be based on “flow “ of the joint (embedment flow) at splitting of the beam and the interaction of joint 

failure and beam splitting has to be regarded. Because plastic flow of the dowel also causes crack opening, the 

derivation has to be adopted as follows:When crack extension starts of a cantilever beam loaded by a constant load 

V, giving a deflection increase of δ at V due to this crack extension, then the applied external energy to the beam is 

V∙δ. The energy balance equation then is:  

/ 2
c

V V E      (B.7)  

where / 2V   is the increase of the elastic energy and 
c

E  the energy of crack extension.  

Thus: / 2
c

E V     (B.8)  

Thus the energy of crack extension is equal to the increase of elastic energy. 

Eq.(B.8) also can be written with de incremental deflection δ = du: 
2

c
E V d(u/V)/2 

f
G b h d ( ) or: 

2

( / ) /

f
G b h

V
u V 


 

  (B.9)  

where 
f

G is the fracture energy per unit crack surface and “bhd(β)” the crack surface increase with “b” as width 

and “h” the height of the beam with a crack length l = βh. 

When the load on the cantilever beam, mentioned above, is prevented to move, the energy balance, eq.(B.7) 

becomes:  

0
e c

E E  , or: / 2
c e

E E V       (B.10)  

for the same crack length and now the energy of crack extension is equal to the decrease of elastic energy in the 

beam. 

For a plastic deformation   of the dowel, there is no elastic deformation and the total external work V   is used 

for plastic dissipation.  

When the joint at load V becomes determining and just start to flow at 
1

  when splitting of the beam occurs, 

(design value of equal strength of joint and beam), then eq.(B.7) becomes:  

1 1
= ( ) / 2 ( )

c
V V V E          (B.11)  

where again 
1

/ 2V   is the increase of the elastic energy and 
1

( )V    the plastic energy of the flow of the 

joint. From eq.(B.11) then follows: 

1
/ 2

c
E V    (B.12)  

the same as eq.(B.8)..  

For dowel connections, plastic deformation is coupled with crack extension. When the dowels of the joint are 

pressed into the wood, the crack opening occurs and thus also crack extension. Thus for joints is:  

1 2 1
V = (V ) / 2 ( )

s
V E            (B.13)  

where 
1

/ 2V   is the energy of initial crack extension; 
1

( )V   the plastic energy of embedment flow and 

2
V / 2  the decrease of elastic energy due to further crack opening by plastic flow of the dowel, (what takes 

the whole external applied energy). 

 From eq.(B.13) now follows:  

1 2
( ) / 2

s
E V      (B.14)  

and eq.(B.9) becomes: 

1 2

2

(( ) / ) /

f
G b h

V
u u V 


  

  (B.15)  

From eq.(B.12) and (B.14) follows that 
1 1 2

( )
c c

V V    , where 
1c c

V   is the amount when the connection is as 

strong as the beam (according to eq.(B.11). Thus: 

1 2

1

c

c

V

V

 




  c n c

n

n V n

n V n
    (B.16) 

where 
n

V  is the ultimate load of the dowel at flow and n the number of dowels.  

Substitution of eq.(B.16) into eq.(B.15) gives: 
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1

2

( / ) /

f

c c

G b h n
V

u V n
 

 
 

 
2

/

0 .6 1 1 .5 / ( )

c

c

G G h n
b h

G E n


   
 

 
 (B.17) 

what is equal to /
c

n n  times the strength according to eq.(B.9) for 
1c

u u , thus /
c

n n  times the splitting 

strength of the beam as is applied in [4].  

According to eq.(B.13), the theoretical lower bound of V according to eq.(B.17) occurs at 
1 2

  , Thus when 

/
c

n n  = 1/2. In [4], the empirical value of 0.5 to 0.4 is found according to the data of [3] and verified by other 

known data, giving:  

1 1

2 2
0 , 4 5 0 .6 7

( / ) / ( / ) /

f f

c c

G b h G b h
V

u V u V 
   

   
  (B.18)  

This Code requirement for “flow” of the joint below failure:
f

G G = 0,67∙18 = 12 
1 .5

N m m


 is included in the 

Eurocode (see § 7.5 of [4]). 

The condition 
1 2

   means that there is sufficient elastic energy for total unloading and thus full crack 

extension with sufficient external work for plastic dissipation by the joints. According to eq.(B.13) is for that 

case:  

1c
E V    (B.19) 

 


